Low Voltage Distribution Transformers

Drive Isolation Transformers

Low Voltage Distribution Transformers

Drive Isolation Transformers

Agent Locator

Drive Isolation Transformers are designed for supplying power to SCR (Silicon Control Rectifier) motor drives which provide convenient variable speed motor control and can save on energy. Unfortunately, the drawback of these variable frequency drives (VFD) is that they produce harmonic voltage distortion and draw harmonic currents from the source which can be damaging both to the transformer supplying the power, and the other equipment that is connected to that supply.

A Drive Isolation Transformer (DIT) is designed specifically to supply power to VFDs. The isolation between the primary and secondary provides electrical isolation between the supply and the load. The transformer core is designed to handle the harmonic voltage without saturating, and the coils are braced to handle the mechanical forces that are introduced due to these harmonic currents. The coils are also designed to mitigate the impact of the harmonic currents. The winding conductors are selected and designed to keep eddy and stray losses to a minimum and the sufficient cooling is provided to dissipate the additional heat generated by the harmonic current.

  • Core and coil assemblies are mounted on neoprene isolation pads to reduce noise
  • Electrical Isolation between the supply and load minimizes feedback of noise generated by SCR voltage spikes to the supply.
  • Thermal sensors embedded in LV coil and wired to terminal blocks can be used for remote monitoring and protection. Bolted coil terminations suitable for copper or aluminum cables
  • Front & back covers are easily removable for service
  • Transformer core is constructed of high quality grain oriented silicon steel and operated well below the materials saturation levels in order to handle the impact of harmonic voltage and current.
  • Suitable for non-sinusoidal load currents with a K factor of 4 (higher K factors are optional).
  • Extra bracing is provided to withstand the mechanical stresses associated with SCR drives
  • Neutral terminal rated for 200% of line current rating to handle zero sequence harmonics flowing through the neutral.
  • NEMA 1 & 3R indoor (refer to catalogue for details) powder-coat drip-proof enclosure is standard. Weather shield kit is available for conversion to NEMA 3R outdoor.
  • NEMA 3R, 4 & 4X enclosures are available. Stainless Steel or aluminum enclosures are optional.
  • CSA Certified / UL listed
  • Copper C&C grounding strap
  • Robust packaging with top and side protection protects against shipping damage
  • Accessible mounting flanges with front/back slotted mounting holes make installation easier
  • 100% Factory tested
  • Clear, Comprehensive Documentation and labeling
Capacity  5 to 900 kVA
Voltage Class  1.2kV
Cooling  Air Cooled (ANN / AN)
Frequency  60Hz (50/60Hz Optional)
Conductors  Copper (Cu) or Aluminum (Al) Windings
Temperature Rise  150°C rise (115°C & 80°C Optional)
Insulation System  220°C
Impregnation  Polyester Resin Dipped and Baked
Efficiency  Meets North American Energy Efficiency Standards:

  • Canada – (NRCan 2019) SOR/2018-201, Amd. 14 & ON Reg. 404/12
K-Factor  Suitable for non-sinusoidal current load with a K-factor not to exceed 4 (K9, K13, K20 Optional)
Primary Taps  Typically +/-2 x 2.5% taps (refer to dry type distribution transformer catalogue)
Sound Level  Meets NEMA ST-20
Enclosure Type  Type 1 or 3R Indoor (refer to catalogue)
Enclosure Finish  ANSI/ASA 61 Grey
Warranty  12 Months (See Warranty and Limitations)
Quality System  ISO 9001:2015 Quality Management System
Certifications
  • CSA Certified
  • UL Listed
Reference Standards
  • CSA C22.2 No 47
  • CSA C9
  • IEEE C57.12.01
  • IEEE C57.12.91
  • IEEE C57.110
  • NEMA ST-20
Optional Features & Accessories
  • Thermal Sensing & Indication
  • Thermometers (Analog/Digital)
  • Thermostat Alarm / Trip (N.O. /N.C. Contacts)
  • Electrostatic Shielding
  • Rated to Handle Current Harmonics (K4, K9, K13, K20)
  • Anti-Condensation Strip Heaters
  • Surge Protection Devices
  • Anti-Vibration Pads
  • Type 1, 2, 3R, 4, 4X or 12 Enclosure
  • 304 or 316L Stainless Steel Enclosure
  • Custom Enclosure Finish (Color)
  • Seismic Certification
Videos

Unless designed for special service conditions / environments, below are the standard service conditions for dry type distribution transformers:

  • Ambient Temperature: -40°C to + 30°C (max peak +40°C)
  • Relative Humidity: less than 70%
  • Altitude: up to 1000m (3300 ft.) above seal level

To ensure proper operation, avoid installing transformers in environments with excessive moisture, extreme temperatures, or direct sunlight. Maintain recommended clearances and keep all ventilation panels unobstructed.

Any transformer which is not installed and energized immediately should be stored in a dry, clean space having a uniform temperature to prevent condensation on the windings. Dry type transformers with resin dipped or epoxy vacuum impregnated coils can be stored at ambient temperatures as low as -50C. Transformers with encapsulated or epoxy cast coils should not be stored at ambient temperatures below -20C to prevent cracking of the epoxy. Preferably, transformers should be stored in a heated building having adequate air circulation and protected from cement, plaster, paint, dirt, and water or other gases, powders, and dust. The floor on which the transformer is being stored should be resistant to the upward migration of water vapor. Precautions should be taken to prevent storage in an area that water could be present, such as roof leaks, windows, etc. Condensation or absorption of moisture can be greatly reduced by keeping the transformer enclosure 5⁰C-10⁰C above ambient temperature. This can be easily achieved by the installation and energization of space heaters (optional). If the transformer is not furnished with internal space heaters, then external, portable heaters can be used. Note: Lamps or heaters should never come in direct contact with the transformer coil insulation.

It is not advisable to store a dry type transformer outdoors, but in the case that it is unavoidable, protective measures should be taken to prevent moisture and foreign debris from entering the transformer enclosure. The plastic wrapping supplied during shipment should be left in place, and a suitable drying agent such as silica gel packs should be used. The unit should also be checked periodically for indications of condensation on the windings, coil support blocks, core, core clamping system and bus/cables.

In dry-type transformers, the surrounding air plays a critical role in their operation. Generally, low ambient temperatures do not negatively impact an energized transformer, as the no-load losses typically generate enough heat to maintain proper conditions, even in environments as cold as -40°C. However, transformers stored at low temperatures present two primary concerns:

  • Insulation Brittleness: At low temperatures, the insulation in the coils may become brittle. Expanding conductors when a cold transformer is loaded, or contracting conductors during cold storage, may cause cracks in the insulation, leading to internal faults.
  • Condensation Risk: Low temperatures can cause condensation inside the transformer enclosure, as well as on the transformer coils. Energizing a transformer with condensation present on the coils can lead to internal faults and insulation damage.

Rex Power Magnetics recommends testing transformers (megger testing), warming them to above 0°C, or following a drying-out procedure if moisture is suspected. Refer to Rex Power Magnetics’ cold start procedures to ensure safe energization in cold conditions. Energizing a transformer with compromised insulation due to moisture can cause damage and potential safety hazards.

The minimum required clearances of a dry type transformer to walls, floors or other equipment must adhere to the local electrical code requirements.

In the absence of such requirements, Rex Power Magnetics recommends that dry type transformers be mounted so that there is an air space of no less than 150mm (6”) between the enclosures, and between the enclosure and any adjacent surface except floors. When the adjacent surface is a combustible material, the minimum permissible separation between the transformer enclosure and the adjacent surface should be 300mm (12”). Where the adjacent surface is the wall on which the transformer is mounted, the minimum permissible separation between the enclosure and the mounting wall should be 6mm (0.25”) so long as the surface is of a non-combustible material.

Temperature rise refers to average increase of temperature of the transformer windings at full load above the ambient temperature. when operating at full load. In addition to the average temperature rise of the windings, transformers also experience a “hot spot” temperature, which refers to the highest temperature point in the windings.

For example, a transformer with a 220°C insulation system may be designed with a 150°C average temperature rise and a 30°C hot spot allowance. This means that Above a 40C ambient, the total absolute temperature will not exceed 220°C. Transformers with lower temperature insulation systems (180°C or 200°C) will be designed with lower temperature rises (115° or C130°C) and hot spots so they can be installed in the same ambient temperature and still not exceed the temperature rating of the insulation system.

The table below shows the maximum average winding temperature rise, maximum hot spot temperature rise and maximum winding temperature for the most common insulation classes. Note that these are based on a max average ambient of 30°C during any 24-hour period and a maximum ambient of 40°C at any time.

Insulation Class Insulation Class Average Winding
Temperature Rise
Hot Spot
Temperature Rise
Maximum Winding
Temperature
Class 180 F 115°C 145°C 180°C
Class 200 N 130°C 160°C 200°C
Class 220 H 150°C 180°C 220°C

Customers occasionally specify a transformer of a particular insulation class to be designed with an average temperature rise below the average temperature rise values shown in the table above. The benefits of doing so include:

  • Longer Transformer Life: Lower temperature rise means the transformer can operate at a lower overall temperature, extending its life expectancy.
  • Handling Higher Ambient Temperatures: Transformers with lower temperature rise ratings can operate safely in higher ambient temperatures without exceeding their insulation limits.
  • Increased Overload Capacity: These transformers can handle continuous or short-term overloads without overheating, making them ideal for environments where transformers may be subject to occasional overloading.

The life expectancy of a dry-type transformer is primarily determined by the insulation system and the operating temperature. According to IEEE Std. C57.96, the deterioration of insulation is directly related to the time and temperature the transformer experiences during operation. Insulation materials degrade faster at higher temperatures, so the transformer’s life expectancy is closely tied to how well it is kept within its design temperature limits.

In most transformers, the highest temperature occurs at a specific point in the windings, known as the hot spot. This area undergoes the most significant wear over time, making it the primary factor in determining the transformer’s ageing process.

All of Rex Power Magnetics’ dry-type transformers are designed using UL-listed insulation systems with a maximum hot spot temperature that ensures a design life of at least 30 years under standard operating conditions (continuous rated load, typical ambient temperatures, and no sustained overloads). Transformers designed with reduced temperature rise can extend this design life expectancy to over 50 years, as operating at lower temperatures slows the insulation’s ageing process.

Factors That Affect Life Expectancy:

  • Temperature: As discussed, the most significant factor is the operating temperature of the transformer. Operating continuously at higher temperatures reduces the expected lifespan.
  • Humidity and Condensation: Humid environments or condensation can affect the insulation material and lead to premature failure. Proper storage and maintenance help mitigate this risk.
  • Short Circuit Events: Sudden surges or short circuits can damage internal components and shorten the transformer’s life.
  • Overloading: Continuous overloading beyond the transformer’s rated capacity generates excess heat, which accelerates insulation degradation.
  • Environmental Conditions: Extreme environments, such as exposure to dust, moisture, or chemicals, can also lead to earlier-than-expected failure.

By following proper installation and maintenance practices, such as avoiding overloading and ensuring the transformer operates within its designed ambient temperature, you can significantly extend its lifespan. Rex Power Magnetics’ high-quality transformers are built for durability, ensuring reliable performance for decades under standard conditions.

It`s normal for new transformers to release some harmless odors from the varnish impregnation used in the coils for a week or two after energization. Older Transformers can also release some odor if loaded to a higher level than they have experienced previously in their history.

Rex Power Magnetics’ ventilated distribution transformer terminals are rated 90°C. Conductors with at least a 90°C insulation rating at or below their 90°C ampacity rating should be utilized.

Canadian dry-type transformer design and manufacturing company

Get Quote